Example 2

AHP Verify

Verify(F4767673,H,K,ComAHP,ΠAHP,X=(7,11,0,1,0,1,0,0,...,0),Y=(12,84))Verify(\mathbb{F}_{4767673}, \mathbb{H}, \mathbb{K}, Com_{AHP},\Pi_{AHP},X=(7,11,0,1,0,1,0,0,...,0),Y=(12,84)) :

Since h3(β3)=h3(5)=h_3(\beta_3)=h_3(5)= and vK(β3)=vK(5)=v_{\mathbb{K}}(\beta_3)=v_{\mathbb{K}}(5)=, therefore, the left of equation (1)(1) is h3(β3)vK(β3)=h_3(\beta_3)v_{\mathbb{K}}(\beta_3)= . Also, since a(β3)=a(5)=a(\beta_3)=a(5)=, b(β3)=b(5)=b(\beta_3)=b(5)= and β3g3(β3)+σ3K=\beta_3g_3(\beta_3)+\frac{\sigma_3}{|\mathbb{K}|}=, therefore, the right of the equation (1)(1) is a(β3)b(β3)(σ3g3(β3)+σ3K)=a(\beta_3)-b(\beta_3)(\sigma_3g_3(\beta_3)+\frac{\sigma_3}{|\mathbb{K}|})=. So, the equation (1)(1) is established.

Since r(α,β2)=α37β237αβ2=103780371080=r(\alpha,\beta_2)=\frac{\alpha^{37}-\beta_2^{37}}{\alpha-\beta_2}=\frac{10^{37}-80^{37}}{10-80}=, σ3=\sigma_3=, therefore, the left of equation (2)(2) is r(α,β2)σ3=r(\alpha,\beta_2)\sigma_3= and since h2(β2)=h2(80)=h_2(\beta_2)=h_2(80)=, vH(β2)=vH(80)=v_{\mathbb{H}}(\beta_2)=v_{\mathbb{H}}(80)=, β2g2(β2)+σ2H=\beta_2g_2(\beta_2)+\frac{\sigma_2}{|\mathbb{H}|}=, therefore, the right of equation (2)(2) is h2(β2)vH+β2g2(β2)+σ2H=h_2(\beta_2)v_{\mathbb{H}}+\beta_2g_2(\beta_2)+\frac{\sigma_2}{|\mathbb{H}|}=. So, equation (2)(2) is established.

Since s(β1)=s(22)=s(\beta_1)=s(22)=, r(α,β1)=r(\alpha,\beta_1)=, M{A,B,C}ηMz^M(β1)=\sum_{M\in\{A,B,C\}}\eta_M\hat{z}_M(\beta_1)=, z^(β1)=\hat{z}(\beta_1)=, σ2=\sigma_2=, therefore, the left of the equation (3)(3) is s(β1)+r(α,β1)(M{A,B,C}ηMz^M(β1))σ2z^(β1)=s(\beta_1)+r(\alpha,\beta_1)(\sum_{M\in\{A,B,C\}}\eta_M\hat{z}_M(\beta_1))-\sigma_2\hat{z}(\beta_1)=. Also since h1(β1)=h1(22)=h_1(\beta_1)=h_1(22)=, vH(β1)=vH(22)=v_{\mathbb{H}}(\beta_1)=v_{\mathbb{H}}(22)=, g1(β1)=g1(22)=g_1(\beta_1)=g_1(22)=, σ1=\sigma_1=, therefore the right of the equation (3)(3) is h1(β1)vH(β1)+β1g1(β1)+σ1H=h_1(\beta_1)v_{\mathbb{H}}(\beta_1)+\beta_1g_1(\beta_1)+\frac{\sigma_1}{|\mathbb{H}|}=. So, the equation (3)(3) is established.

Since z^A(β1)=z^A(22)=\hat{z}_A(\beta_1)=\hat{z}_A(22)=, z^B(β1)=z^B(22)=\hat{z}_B(\beta_1)=\hat{z}_B(22)=, z^C(β1)=z^C(22)=\hat{z}_C(\beta_1)=\hat{z}_C(22)=, therefore, the left of the equation (4)(4) is z^A(β1)z^B(β1)z^C(β1)=\hat{z}_A(\beta_1)\hat{z}_B(\beta_1)-\hat{z}_C(\beta_1)=. Also since h0(β1)=h0(22)=h_0(\beta_1)=h_0(22)= and vH(β1)=vH(22)=v_{\mathbb{H}}(\beta_1)=v_{\mathbb{H}}(22)=, therefore the right of the equation (4)(4) is h0(β1)vH(β1)=h_0(\beta_1)v_{\mathbb{H}}(\beta_1)=. So the equation (4)(4) is established.

2- The output resultresult in following steps is 11.

2-1- The Verifier chooses random values ηw^\eta_{\hat{w}}, ηz^A\eta_{\hat{z}_A}, ηz^B\eta_{\hat{z}_B}, ηz^C\eta_{\hat{z}_C}, ηh0\eta_{h_0}, ηs\eta_s, ηg1\eta_{g_1}, ηh1\eta_{h_1}, ηg2\eta_{g_2}, ηh2\eta_{h_2}, ηg3\eta_{g_3} and ηh3\eta_{h_3} of F\mathbb{F} For example, ηw^=1\eta_{\hat{w}}=1, ηz^A=4\eta_{\hat{z}_A}=4, ηz^B=10\eta_{\hat{z}_B}=10, ηz^C=8\eta_{\hat{z}_C}=8, ηh0=32\eta_{h_0}=32, ηs=45\eta_s=45, ηg1=92\eta_{g_1}=92, ηh1=11\eta_{h_1}=11, ηg2=1\eta_{g_2}=1, ηh2=5\eta_{h_2}=5, ηg3=25\eta_{g_3}=25 and ηh3=63\eta_{h_3}=63.

2-2- The Verifier derives commitment of p(x)p(x), CompCom_p, by using polynomial commitment scheme homomorphism. For example, if polynomial commitment scheme KZGKZG is used, then Comp=ηw^ComAHPX1+ηz^AComAHPX2+ηz^BComAHPX3+ηz^CComAHPX4+ηh0ComAHPX5+ηsComAHPX6+ηg1ComAHPX7+ηh1ComAHPX8+ηg2ComAHPX9+ηh2ComAHPX10+ηg3ComAHPX11+ηh3ComAHPX12=Com_p=\eta_{\hat{w}}Com_{AHP_X}^1+\eta_{\hat{z}_A}Com_{AHP_X}^2+\eta_{\hat{z}_B}Com_{AHP_X}^3+\eta_{\hat{z}_C}Com_{AHP_X}^4+\eta_{h_0}Com_{AHP_X}^5+\eta_sCom_{AHP_X}^6+\eta_{g_1}Com_{AHP_X}^7+\eta_{h_1}Com_{AHP_X}^8+\eta_{g_2}Com_{AHP_X}^9+\eta_{h_2}Com_{AHP_X}^{10}+\eta_{g_3}Com_{AHP_X}^{11}+\eta_{h_3}Com_{AHP_X}^{12}=

2-3- The Verifier chooses random xFx'\in\mathbb{F} and queries p(x)p(x'). For example, x=2x'=2.

2-4- The Verifier computes result=PC.Check(vk,Comp,x,y=πAHP16,πAHP17)result=PC.Check(vk,Com_p,x',y'=\pi_{AHP}^{16},\pi_{AHP}^{17}). For example, if polynomial commitment scheme KZGKZG is used, then the following equation checks: e(Compgy,g)=e(πAHP17,vkgx)e(Com_p-gy',g)=e(\pi_{AHP}^{17},vk-gx')

where e(Compgy,g)e(Com_p-gy',g) and e(πAHP17,vkgx)=e(\pi_{AHP}^{17},vk-gx')=

Last updated