Setup(1λ,N): This function outputs pp=PC.Setup(1λ,d).
We consider an input x with size of 1. Hence, ni=1. Considering a program which requires three gates for its arithmatization, we have ng=3. In this example, the maximum number of registers which are changed during the execution is nr=1. If the computation is done in F of order p=181, ∣F∣=181. Also, ∣H∣=n=ng+ni+1=5. Also, b is a random number in { 1,...,∣F∣−∣H∣} ={ 1,...,176 } such as b=2. Also, m=2ng=6, ∣w∣=ng−nr=2, ∣K∣=m=6. Hence:
d= { dAHP(N,i,j) } $_{i=0,1,...,k_AHP, j=1,2,..,s_AHP(i)}^{}$ = { 6,6,6,6,6,6,6,6,6,4,7,7,7,8,11,4,6,4,4,5,30 }
Now, we run KZG.Setup(1λ,d), considering a generator of F, g=2, for each element in d:
KZG.Setup(1λ,6)=(ck,vk)= ({ gτi } $_{i=0}^5$, gτ)
that for secret element τ=119 and generator g=2 outputs ck= { gτi } $_{i=0}^5$ =(2,57,86,98,78,51) and vk=57.
KZG.Setup(1λ,4)=(ck,vk)= ({ gτi } $_{i=0}^3$, gτ)
that for secret element τ=119 and generator g=2 outputs ck= { gτi } $_{i=0}^3$ =(2,57,86,98) and vk=57.
KZG.Setup(1λ,7)=(ck,vk)= ({ gτi } $_{i=0}^6$, gτ)
that for secret element τ=119 and generator g=2 outputs ck= { gτi } $_{i=0}^6$ =(2,57,86,98,78,51,96) and vk=57.
KZG.Setup(1λ,8)=(ck,vk)= ({ gτi } $_{i=0}^7$, gτ)
that for secret element τ=119 and generator g=2 outputs ck= { gτi } $_{i=0}^7$ =(2,57,86,98,78,51,96,21) and vk=57.
KZG.Setup(1λ,11)=(ck,vk)= ({ gτi } $_{i=0}^{10}$, gτ)
that for secret element τ=119 and generator g=2 outputs ck= { gτi } $_{i=0}^{10}$ =(2,57,86,98,78,51,96,21,146,179,124) and vk=57.
KZG.Setup(1λ,6)=(ck,vk)= ({ gτi } $_{i=0}^5$, gτ)
that for secret element τ=119 and generator g=2 outputs ck= { gτi } $_{i=0}^5$ =(2,57,86,98,78,51) and vk=57.
KZG.Setup(1λ,30)=(ck,vk)= ({ gτi } $_{i=0}^{29}$, gτ)