Example 2

Setup(1λ,N)Setup(1^{\lambda},N): This function outputs pp=PC.Setup(1λ,d)pp=PC.Setup(1^{\lambda},d).

We consider an input xx with size of 32. Hence, ni=32n_i=32. Considering a program which requires 4 gates for its arithmatization, we have ng=4n_g=4. In this example, the maximum number of registers which are changed during the execution is nr=2n_r=2 (Please see Example 2 in the Commitment phase). If the computation is done in F\mathbb{F} of order p=1,678,321p=1,678,321, F=1678321|\mathbb{F}|=1678321. Also, H=n=ng+ni+1=37|\mathbb{H}|=n=n_g+n_i+1=37. Also, bb is a random number in { 1,...,FH1,...,|\mathbb{F}|-|\mathbb{H}|} = { 1,...,167832137=16782841,...,1678321-37=1678284 } such as b=2b=2. Also, m=2ng=8m=2n_g=8, w=ngnr=2|w|=n_g-n_r=2, K=m=8|\mathbb{K}|=m=8. Hence:

d=d= { dAHP(N,i,j)d_{AHP}(N,i,j) } $_{i=0,1,...,k_AHP, j=1,2,..,s_AHP(i)}^{}$ = { 8,8,8,8,8,8,8,8,8,4,39,39,39,40,75,36,38,36,36,7,42 }

Now, we run KZG.Setup(1λ,d)KZG.\hspace{1mm}Setup(1^{\lambda},d), considering a generator of F\mathbb{F}, g=11g=11, for each element in dd:

KZG.Setup(1λ,138)=(ck,vk)=KZG.Setup(1^{\lambda},138)=(ck,vk)= ({ gτig\tau^i } $_{i=0}^{137}$, gτg \tau)

that for secret element τ=119\tau=119 and generator g=11g=11 outputs ck=ck= { gτig\tau^i } $_{i=0}^{137}$ =(11,1309,...)=(11,1309,...) and vk=1309vk=1309.

KZG.Setup(1λ,4)=(ck,vk)=KZG.Setup(1^{\lambda},4)=(ck,vk)= ({ gτig\tau^i } $_{i=0}^{3}$, gτg \tau)

that for secret element τ=119\tau=119 and generator g=11g=11 outputs ck=ck= { gτig\tau^i } $_{i=0}^{3}$ =(11,1309,...)=(11,1309,...) and vk=1309vk=1309.

KZG.Setup(1λ,39)=(ck,vk)=KZG.Setup(1^{\lambda},39)=(ck,vk)= ({ gτig\tau^i } $_{i=0}^{38}$, gτg \tau)

that for secret element τ=119\tau=119 and generator g=11g=11 outputs ck=ck= { gτig\tau^i } $_{i=0}^{38}$ =(11,1309,...)=(11,1309,...) and vk=1309vk=1309.

KZG.Setup(1λ,40)=(ck,vk)=KZG.Setup(1^{\lambda},40)=(ck,vk)= ({ gτig\tau^i } $_{i=0}^{39}$, gτg \tau)

that for secret element τ=119\tau=119 and generator g=11g=11 outputs ck=ck= { gτig\tau^i } $_{i=0}^{39}$ =(11,1309,...)=(11,1309,...) and vk=1309vk=1309.

KZG.Setup(1λ,75)=(ck,vk)=KZG.Setup(1^{\lambda},75)=(ck,vk)= ({ gτig\tau^i } $_{i=0}^{74}$, gτg \tau)

that for secret element τ=119\tau=119 and generator g=11g=11 outputs ck=ck= { gτig\tau^i } $_{i=0}^{74}$ =(11,1309,...)=(11,1309,...) and vk=1309vk=1309.

Last updated