docs
  • README
  • Browsing the Fides Innova ZKP Network
  • Connecting Your MetaMask to the Network
  • Full Node
  • Introduction
  • Mobile App
  • Publishing Service Contracts on the Fides Innova Blockchain
  • Web App (User Panel, Admin Panel)
  • Fides Zero-Knowledge Proof (ZKP) Algorithm
    • 1- Setup Phase
      • 1- Setup Phase
      • Example 1
      • Example 2
    • 2-commitment-phase
      • 2- Commitment Phase
      • Example 1
      • Example 2
    • 3- Proof Generation Phase
      • 3- Proof Generation Phase
      • Example 1
      • Example 2
    • 4- Proof Verification Phase
      • 4- Proof Verification Phase
      • Example 1
      • Example 2
    • 5-target-architecture
      • Target architecture - RISC-V RV32IM
      • Target architecture - ARMv6-M Cortex-M0 32-bit ARM - RaspberryPi Pico
      • Target architecture - Cortex-A53 - for Siemens SIMATIC IOT2050
  • Tech Stack
    • Message Queuing Telemetry Transport (MQTT) protocol
    • Service Contract
    • Service Market
    • ZKP-enabled JavaScript Execution
  • ZKP and IoT Device Firmware Integration (zk-Device Design)
    • E-Card; a sample zk-Device
      • Installation
      • Instruction Set Architecture (ISA)
      • Mesh IoT Network
      • Reset
Powered by GitBook
On this page
  • AHP Proof
  1. Fides Zero-Knowledge Proof (ZKP) Algorithm
  2. 3- Proof Generation Phase

Example 2

AHP Proof

Proof(F1678321,H,K,A,B,C,X=(7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0),W=(12,22),Y=(32,84))Proof (\mathbb{F}_{1678321}, \mathbb{H}, \mathbb{K}, A, B, C, X=(7 , 11 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,7 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0, 0),W=(12,22),Y=(32,84))Proof(F1678321​,H,K,A,B,C,X=(7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0),W=(12,22),Y=(32,84))

1- The Prover puts X=(7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,...,0)X=(7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,...,0)X=(7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,...,0) in ComAHPX1Com_{AHP_X}^1ComAHPX​1​ . We consider z=(1,x1,x2,...,x32,w1,w2,y1,y2)z=(1,x_1,x_2,...,x_{32},w_1,w_2,y_1,y_2)z=(1,x1​,x2​,...,x32​,w1​,w2​,y1​,y2​) where w1=x1+5w_1=x_1+5w1​=x1​+5, w2=x2×x10w_2=x_2\times x_{10}w2​=x2​×x10​ , y1=w2+10y_1=w_2+10y1​=w2​+10 and y2=w1×x19y_2=w_1\times x_{19}y2​=w1​×x19​. Therefore z=(1,X,W,Y)=(1,7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,...,0,12,22,32,84)z=(1,X,W,Y)=(1,7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,...,0,12,22,32,84)z=(1,X,W,Y)=(1,7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,...,0,12,22,32,84) The Prover calculates:

zA=Az=[00000:111112]z_A=Az=\begin{bmatrix}0\\0\\0\\0\\0\\:\\1\\11\\1\\12\end{bmatrix}zA​=Az=​00000:111112​​, zB=Bz=[00000:122327]z_B=Bz=\begin{bmatrix}0\\0\\0\\0\\0\\:\\12\\2\\32\\7\end{bmatrix}zB​=Bz=​00000:122327​​, zC=Cz=[00000:12223284]z_C=Cz=\begin{bmatrix}0\\0\\0\\0\\0\\:\\12\\22\\32\\84\end{bmatrix}zC​=Cz=​00000:12223284​​

2- The Prover calculates the polynomial zA(x)z_A(x)zA​(x)using indexing zAz_AzA​ by elements of H\mathbb{H}H that mean zA(x)z_A(x)zA​(x) is the polynomial where zA(1)=...=zA(ω32)=0z_A(1)=...=z_A(\omega^{32})=0zA​(1)=...=zA​(ω32)=0, zA(ω33)=1z_A(\omega^{33})=1zA​(ω33)=1, zA(ω34)=11z_A(\omega^{34})=11zA​(ω34)=11, zA(ω35)=1z_A(\omega^{35})=1zA​(ω35)=1 and zA(ω36)=12z_A(\omega^{36})=12zA​(ω36)=12.

Then calculates polynomial z^A(x)\hat{z}_A(x)z^A​(x) using the polynomial zA(x)z_A(x)zA​(x) such that z^A(x)∈F<∣H∣+b[x]\hat{z}_A(x)\in \mathbb{F}^{<|\mathbb{H}|+b}[x]z^A​(x)∈F<∣H∣+b[x] that agree with zA(x)z_A(x)zA​(x) on H\mathbb{H}H . Note that values of up to bbb locations in this polynomial reveals no information about the witness www provided the locations are in F−H\mathbb{F}-\mathbb{H}F−H. Here, for simplicity, let b=2b=2b=2. The Prover calculates z^A(x)\hat{z}_A(x)z^A​(x) such that agree with zA(x)z_A(x)zA​(x) on H\mathbb{H}H and also z^A(3)=3\hat{z}_A(3)=3z^A​(3)=3, z^A(4)=4\hat{z}_A(4)=4z^A​(4)=4.

Therefore, we have

z^A(x)=L34(x)+11L35(x)+L36(x)+12L37(x)+3L38(x)+4L39(x)=\hat{z}_A(x)=L_{34}(x)+11L_{35}(x)+L_{36}(x)+12L_{37}(x)+3L_{38}(x)+4L_{39}(x)=z^A​(x)=L34​(x)+11L35​(x)+L36​(x)+12L37​(x)+3L38​(x)+4L39​(x)= 287049x38+1530559x37+904146x36+766942x35+900649x34+705790x33+88593x32+1406132x31+222647x30+897917x29+981227x28+1080203x27+166128x26+1374718x25+150588x24+561332x23+607746x22+144534x21+876189x20+1124687x19+1070791x18+933185x17+446434x16+216721x15+654101x14+1319736x13+44719x12+1448628x11+482390x10+604857x9+1459683x8+1498609x7+1506753x6+1322746x5+321181x4+1167473x3+1216744x2+703489x+692083287049x^{38} + 1530559x^{37} + 904146x^{36} + 766942x^{35} + 900649x^{34} + 705790x^{33} + 88593x^{32} + 1406132x^{31} + 222647x^{30} + 897917x^{29} + 981227x^{28} + 1080203x^{27} + 166128x^{26} + 1374718x^{25} + 150588x^{24} + 561332x^{23} + 607746x^{22} + 144534x^{21} + 876189x^{20} + 1124687x^{19} + 1070791x^{18} + 933185x^{17} + 446434x^{16} + 216721x^{15} + 654101x^{14} + 1319736x^{13} + 44719x^{12} + 1448628x^{11} + 482390x^{10} + 604857x^9 + 1459683x^8 + 1498609x^7 + 1506753x^6 + 1322746x^5 + 321181x^4 + 1167473x^3 + 1216744x^2 + 703489x + 692083287049x38+1530559x37+904146x36+766942x35+900649x34+705790x33+88593x32+1406132x31+222647x30+897917x29+981227x28+1080203x27+166128x26+1374718x25+150588x24+561332x23+607746x22+144534x21+876189x20+1124687x19+1070791x18+933185x17+446434x16+216721x15+654101x14+1319736x13+44719x12+1448628x11+482390x10+604857x9+1459683x8+1498609x7+1506753x6+1322746x5+321181x4+1167473x3+1216744x2+703489x+692083

Similarly, calculates polynomial z^B(x)\hat{z}_B(x)z^B​(x) so that z^B(x)∈F<∣H∣+b[x]\hat{z}_B(x)\in \mathbb{F}^{<|\mathbb{H}|+b}[x]z^B​(x)∈F<∣H∣+b[x] that agree with zB(x)z_B(x)zB​(x) on H\mathbb{H}H that mean z^B(1)=...=z^B(ω32)=0\hat{z}_B(1)=...=\hat{z}_B(\omega^{32})=0z^B​(1)=...=z^B​(ω32)=0, z^B(ω33)=12\hat{z}_B(\omega^{33})=12z^B​(ω33)=12, z^B(ω34)=2\hat{z}_B(\omega^{34})=2z^B​(ω34)=2, z^B(ω35)=32\hat{z}_B(\omega^{35})=32z^B​(ω35)=32 and z^B(ω36)=7\hat{z}_B(\omega^{36})=7z^B​(ω36)=7 and also b=2b=2b=2 random locations z^B(3)=3\hat{z}_B(3)=3z^B​(3)=3 and z^B(4)=4\hat{z}_B(4)=4z^B​(4)=4. So, z^B(x)=12L34(x)+2L35(x)+32L36(x)+7L37(x)+3L38(x)+4L39(x)=\hat{z}_B(x)=12L_{34}(x)+2L_{35}(x)+32L_{36}(x)+7L_{37}(x)+3L_{38}(x)+4L_{39}(x)=z^B​(x)=12L34​(x)+2L35​(x)+32L36​(x)+7L37​(x)+3L38​(x)+4L39​(x)= 161089x38+1433536x37+238219x36+346226x35+1104416x34+613699x33+1378515x32+108992x31+95427x30+329078x29+86471x28+228443x27+395171x26+62079x25+1633970x24+379821x23+1501801x22+1249926x21+616403x20+1137937x19+1001808x18+883357x17+807358x16+1538605x15+1046489x14+969902x13+1160416x12+1109343x11+1454517x10+483212x9+1314862x8+565414x7+875354x6+128579x5+915543x4+1574629x3+1309763x2+450382x+1197347161089x^{38} + 1433536x^{37} + 238219x^{36} + 346226x^{35} + 1104416x^{34} + 613699x^{33} + 1378515x^{32} + 108992x^{31} + 95427x^{30} + 329078x^{29} + 86471x^{28} + 228443x^{27} + 395171x^{26} + 62079x^{25} + 1633970x^{24} + 379821x^{23} + 1501801x^{22} + 1249926x^{21} + 616403x^{20} + 1137937x^{19} + 1001808x^{18} + 883357x^{17} + 807358x^{16} + 1538605x^{15} + 1046489x^{14} + 969902x^{13} + 1160416x^{12} + 1109343x^{11} + 1454517x^{10} + 483212x^9 + 1314862x^8 + 565414x^7 + 875354x^6 + 128579x^5 + 915543x^4 + 1574629x^3 + 1309763x^2 + 450382x + 1197347161089x38+1433536x37+238219x36+346226x35+1104416x34+613699x33+1378515x32+108992x31+95427x30+329078x29+86471x28+228443x27+395171x26+62079x25+1633970x24+379821x23+1501801x22+1249926x21+616403x20+1137937x19+1001808x18+883357x17+807358x16+1538605x15+1046489x14+969902x13+1160416x12+1109343x11+1454517x10+483212x9+1314862x8+565414x7+875354x6+128579x5+915543x4+1574629x3+1309763x2+450382x+1197347

Similarly, calculates polynomial z^C(x)\hat{z}_C(x)z^C​(x) such that z^C(x)∈F<∣H∣+b[x]\hat{z}_C(x)\in \mathbb{F}^{<|\mathbb{H}|+b}[x]z^C​(x)∈F<∣H∣+b[x] that agree with zC(x)z_C(x)zC​(x) on H\mathbb{H}H that mean z^C(1)=...=z^C(ω32)=0\hat{z}_C(1)=...=\hat{z}_C(\omega^{32})=0z^C​(1)=...=z^C​(ω32)=0, z^C(ω33)=12\hat{z}_C(\omega^{33})=12z^C​(ω33)=12 , z^C(ω34)=22\hat{z}_C(\omega^{34})=22z^C​(ω34)=22, z^C(ω35)=32\hat{z}_C(\omega^{35})=32z^C​(ω35)=32 and z^C(ω36)=84\hat{z}_C(\omega^{36})=84z^C​(ω36)=84 and also b=2b=2b=2 random locations z^C(3)=3\hat{z}_C(3)=3z^C​(3)=3 and z^C(4)=4\hat{z}_C(4)=4z^C​(4)=4. So, z^C(x)=12L34(x)+22L35(x)+32L36(x)+84L37(x)+3L38(x)+4L39(x)=\hat{z}_C(x)=12L_{34}(x)+22L_{35}(x)+32L_{36}(x)+84L_{37}(x)+3L_{38}(x)+4L_{39}(x)=z^C​(x)=12L34​(x)+22L35​(x)+32L36​(x)+84L37​(x)+3L38​(x)+4L39​(x)= 411621x38+1135315x37+1041565x36+1267429x35+702672x34+1544342x33+1289612x32+70607x31+1084584x30+418963x29+406701x28+1248319x27+849425x26+1422362x25+1308156x24+475901x23+287621x22+1484809x21+835172x20+192385x19+1001678x18+1374779x17+456462x16+64473x15+948391x14+258251x13+1536835x12+1216001x11+27794x10+1666393x9+1197528x8+118632x7+1415153x6+1478306x5+227473x4+521470x3+1270694x2+856256x+452290411621x^{38 }+ 1135315x^{37} + 1041565x^{36} + 1267429x^{35} + 702672x^{34} + 1544342x^{33} + 1289612x^{32 }+ 70607x^{31} + 1084584x^{30} + 418963x^{29} + 406701x^{28} + 1248319x^{27} + 849425x^{26} + 1422362x^{25} + 1308156x^{24} + 475901x^{23} + 287621x^{22} + 1484809x^{21} + 835172x^{20} + 192385x^{19} + 1001678x^{18} + 1374779x^{17} + 456462x^{16} + 64473x^{15} + 948391x^{14} + 258251x^{13} + 1536835x^{12} + 1216001x^{11} + 27794x^{10} + 1666393x^9 + 1197528x^8 + 118632x^7 + 1415153x^6 + 1478306x^5 + 227473x^4 + 521470x^3 + 1270694x^2 + 856256x + 452290411621x38+1135315x37+1041565x36+1267429x35+702672x34+1544342x33+1289612x32+70607x31+1084584x30+418963x29+406701x28+1248319x27+849425x26+1422362x25+1308156x24+475901x23+287621x22+1484809x21+835172x20+192385x19+1001678x18+1374779x17+456462x16+64473x15+948391x14+258251x13+1536835x12+1216001x11+27794x10+1666393x9+1197528x8+118632x7+1415153x6+1478306x5+227473x4+521470x3+1270694x2+856256x+452290

The Prover calculates polynomial W^(x)∈F<ng+b[x]\hat{W}(x)\in \mathbb{F}^{<n_g+b}[x]W^(x)∈F<ng​+b[x] that agree with Wˉ(x)\bar{W}(x)Wˉ(x) on H[>∣X∣+1]\mathbb{H}[>|X|+1]H[>∣X∣+1] where

Wˉ:H[>∣X∣+1]={ω33,ω34,ω35,ω36}→F\bar{W}:\mathbb{H}[>|X|+1]=\{\omega^{33},\omega^{34},\omega^{35},\omega^{36}\}\to \mathbb{F}Wˉ:H[>∣X∣+1]={ω33,ω34,ω35,ω36}→F

Wˉ(h)=W(h)−X^(h)vH[≤∣X∣+1](h),h∈{w33,w34}\bar{W}(h)=\frac{W(h)-\hat{X}(h)}{v_{\mathbb{H}[\leq |X|+1]}(h)},\hspace{1mm}h\in\{w^{33},w^{34}\}Wˉ(h)=vH[≤∣X∣+1]​(h)W(h)−X^(h)​,h∈{w33,w34}

Wˉ(h)=Y(h)−X^(h)vH[≤∣X∣+1](h),h∈{w35,w36}\bar{W}(h)=\frac{Y(h)-\hat{X}(h)}{v_{\mathbb{H}[\leq |X|+1]}(h)},\hspace{1mm}h\in\{w^{35},w^{36}\}Wˉ(h)=vH[≤∣X∣+1]​(h)Y(h)−X^(h)​,h∈{w35,w36}

and vH[≤∣X∣+1](h)v_{\mathbb{H}[\leq |X|+1]}(h)vH[≤∣X∣+1]​(h) is vanishing polynomial on H[≤∣X∣+1]={1,ω,...,ω32}\mathbb{H}[\leq |X|+1]=\{1,\omega,...,\omega^{32}\}H[≤∣X∣+1]={1,ω,...,ω32}, therefore vH[≤∣X∣+1](h)=(h−1)(h−ω)...(h−ω32)v_{\mathbb{H}[\leq |X|+1]}(h)=(h-1)(h-\omega)...(h-\omega^{32})vH[≤∣X∣+1]​(h)=(h−1)(h−ω)...(h−ω32). Also X^(h)\hat{X}(h)X^(h) is the polynomial such that X^(1)=1\hat{X}(1)=1X^(1)=1 and X^(ω)=7\hat{X}(\omega)=7X^(ω)=7, X^(ω2)=11\hat{X}(\omega^2)=11X^(ω2)=11, X^(ω4)=1\hat{X}(\omega^4)=1X^(ω4)=1, X^(ω6)=1\hat{X}(\omega^6)=1X^(ω6)=1, X^(ω10)=2\hat{X}(\omega^{10})=2X^(ω10)=2, X^(ω19)=7\hat{X}(\omega^{19})=7X^(ω19)=7, X^(ωi)=0\hat{X}(\omega^i)=0X^(ωi)=0 for i∈{1,...,32}−{1,2,4,6,10,19}i\in\{1,...,32\}-\{1,2,4,6,10,19\}i∈{1,...,32}−{1,2,4,6,10,19}, therefore X^(x)=1609426x32+145361x31+1059045x30+558036x29+838324x28+732837x27+976113x26+1264050x25+1273306x24+173112x23+551049x22+69676x21+904932x20+1127571x19+546454x18+227060x17+368192x16+552618x15+1053934x14+1614372x13+339618x12+826651x11+852561x10+649028x9+350872x8+760561x7+761015x6+1256843x5+750361x4+868552x3+1432254x2+741241x+1618112\hat{X}(x)=1609426x^{32} + 145361x^{31} + 1059045x^{30} + 558036x^{29} + 838324x^{28} + 732837x^{27} + 976113x^{26} + 1264050x^{25} + 1273306x^{24} + 173112x^{23} + 551049x^{22} + 69676x^{21} + 904932x^{20} + 1127571x^{19} + 546454x^{18} + 227060x^{17} + 368192x^{16} + 552618x^{15} + 1053934x^{14} + 1614372x^{13} + 339618x^{12} + 826651x^{11} + 852561x^{10} + 649028x^9 + 350872x^8 + 760561x^7 + 761015x^6 + 1256843x^5 + 750361x^4 + 868552x^3 + 1432254x^2 + 741241x + 1618112X^(x)=1609426x32+145361x31+1059045x30+558036x29+838324x28+732837x27+976113x26+1264050x25+1273306x24+173112x23+551049x22+69676x21+904932x20+1127571x19+546454x18+227060x17+368192x16+552618x15+1053934x14+1614372x13+339618x12+826651x11+852561x10+649028x9+350872x8+760561x7+761015x6+1256843x5+750361x4+868552x3+1432254x2+741241x+1618112Therefore,

w^(x)=379888x5+1037474x4+1130442x3+55492x2+1492556x+1299562\hat{w}(x)=379888x^5 + 1037474x^4 + 1130442x^3 + 55492x^2 + 1492556x + 1299562w^(x)=379888x5+1037474x4+1130442x3+55492x2+1492556x+1299562

3- The Prover finds polynomial h0(x)h_0(x)h0​(x) so that z^A(x)z^B(x)−z^C(x)=h0(x)vH(x)\hat{z}_A(x)\hat{z}_B(x)-\hat{z}_C(x)=h_0(x)v_{\mathbb{H}}(x)z^A​(x)z^B​(x)−z^C​(x)=h0​(x)vH​(x). Since z^A(x)z^B(x)−z^C(x)=1014490x76+91446x75+1040499x74+247239x73+340507x72+198429x71+1248016x70+1122641x69+1067491x68+1268939x67+926637x66+270789x65+35309x64+1572201x63+1392158x62+1197501x61+1269609x60+225080x59+236470x58+1171130x57+988x56+1073543x55+1461879x54+1490686x53+314250x52+974543x51+772228x50+1301945x49+1393100x48+842325x47+148723x46+632720x45+1426141x44+178796x43+1520995x42+913282x41+716999x40+1535044x39+506626x38+188456x37+1431082x36+1337814x35+1479892x34+430305x33+555680x32+610830x31+409382x30+751684x29+1407532x28+1643012x27+106120x26+286163x25+480820x24+408712x23+1453241x22+1441851x21+507191x20+1677333x19+604778x18+216442x17+187635x16+1364071x15+703778x14+906093x13+376376x12+285221x11+835996x10+1529598x9+1045601x8+252180x7+1499525x6+157326x5+765039x4+961322x3+807108x2+1080249x+449366\hat{z}_A(x)\hat{z}_B(x)-\hat{z}_C(x)=1014490x^{76} + 91446x^{75} + 1040499x^{74} + 247239x^{73} + 340507x^{72} + 198429x^{71} + 1248016x^{70} + 1122641x^{69} + 1067491x^{68} + 1268939x^{67} + 926637x^{66} + 270789x^{65} + 35309x^{64 }+ 1572201x^{63} + 1392158x^{62} + 1197501x^{61} + 1269609x^{60} + 225080x^{59} + 236470x^{58} + 1171130x^{57} + 988x^{56} + 1073543x^{55} + 1461879x^{54} + 1490686x^{53} + 314250x^{52} + 974543x^{51} + 772228x^{50} + 1301945x^{49} + 1393100x^{48} + 842325x^{47} + 148723x^{46} + 632720x^{45} + 1426141x^{44} + 178796x^{43} + 1520995x^{42} + 913282x^{41} + 716999x^{40 }+ 1535044x^{39} + 506626x^{38} + 188456x^{37} + 1431082x^{36} + 1337814x^{35} + 1479892x^{34 }+ 430305x^{33} + 555680x^{32} + 610830x^{31} + 409382x^{30} + 751684x^{29} + 1407532x^{28 }+ 1643012x^{27} + 106120x^{26} + 286163x^{25} + 480820x^{24} + 408712x^{23} + 1453241x^{22} + 1441851x^{21} + 507191x^{20} + 1677333x^{19} + 604778x^{18} + 216442x^{17} + 187635x^{16} + 1364071x^{15} + 703778x^{14 }+ 906093x^{13} + 376376x^{12} + 285221x^{11} + 835996x^{10} + 1529598x^9 + 1045601x^8 + 252180x^7 + 1499525x^6 + 157326x^5 + 765039x^4 + 961322x^3 + 807108x^2 + 1080249x + 449366z^A​(x)z^B​(x)−z^C​(x)=1014490x76+91446x75+1040499x74+247239x73+340507x72+198429x71+1248016x70+1122641x69+1067491x68+1268939x67+926637x66+270789x65+35309x64+1572201x63+1392158x62+1197501x61+1269609x60+225080x59+236470x58+1171130x57+988x56+1073543x55+1461879x54+1490686x53+314250x52+974543x51+772228x50+1301945x49+1393100x48+842325x47+148723x46+632720x45+1426141x44+178796x43+1520995x42+913282x41+716999x40+1535044x39+506626x38+188456x37+1431082x36+1337814x35+1479892x34+430305x33+555680x32+610830x31+409382x30+751684x29+1407532x28+1643012x27+106120x26+286163x25+480820x24+408712x23+1453241x22+1441851x21+507191x20+1677333x19+604778x18+216442x17+187635x16+1364071x15+703778x14+906093x13+376376x12+285221x11+835996x10+1529598x9+1045601x8+252180x7+1499525x6+157326x5+765039x4+961322x3+807108x2+1080249x+449366 and vH(x)=∏h∈H(x−h)=x37+1v_{\mathbb{H}}(x)=\prod_{h\in\mathbb{H}}(x-h)=x^{37}+1vH​(x)=∏h∈H​(x−h)=x37+1, The Prover finds h0(x)=1014490x39+91446x38+1040499x37+247239x36+340507x35+198429x34+1248016x33+1122641x32+1067491x31+1268939x30+926637x29+270789x28+35309x27+1572201x26+1392158x25+1197501x24+1269609x23+225080x22+236470x21+1171130x20+988x19+1073543x18+1461879x17+1490686x16+314250x15+974543x14+772228x13+1301945x12+1393100x11+842325x10+148723x9+632720x8+1426141x7+178796x6+1520995x5+913282x4+716999x3+871213x2+598072x+1228955h_0(x)=1014490x^{39} + 91446x^{38} + 1040499x^{37} + 247239x^{36} + 340507x^{35} + 198429x^{34} + 1248016x^{33 }+ 1122641x^{32} + 1067491x^{31} + 1268939x^{30} + 926637x^{29} + 270789x^{28} + 35309x^{27} + 1572201x^{26} + 1392158x^{25} + 1197501x^{24} + 1269609x^{23} + 225080x^{22} + 236470x^{21} + 1171130x^{20 }+ 988x^{19} + 1073543x^{18} + 1461879x^{17} + 1490686x^{16 }+ 314250x^{15} + 974543x^{14} + 772228x^{13} + 1301945x^{12} + 1393100x^{11} + 842325x^{10} + 148723x^9 + 632720x^8 + 1426141x^7 + 178796x^6 + 1520995x^5 + 913282x^4 + 716999x^3 + 871213x^2 + 598072x + 1228955h0​(x)=1014490x39+91446x38+1040499x37+247239x36+340507x35+198429x34+1248016x33+1122641x32+1067491x31+1268939x30+926637x29+270789x28+35309x27+1572201x26+1392158x25+1197501x24+1269609x23+225080x22+236470x21+1171130x20+988x19+1073543x18+1461879x17+1490686x16+314250x15+974543x14+772228x13+1301945x12+1393100x11+842325x10+148723x9+632720x8+1426141x7+178796x6+1520995x5+913282x4+716999x3+871213x2+598072x+1228955

4- The Prover samples a fully random s(x)∈F<2∣H∣+b−1=71[x]s(x)\in\mathbb{F}^{<2|\mathbb{H}|+b-1=71}[x]s(x)∈F<2∣H∣+b−1=71[x]. Consider s(x)=7x10+100x8+2x3+1s(x)=7x^{10}+100x^8+2x^3+1s(x)=7x10+100x8+2x3+1. Then, the Prover computes sum σ1=∑k∈Hs(k)=4255\sigma_1=\sum_{k\in \mathbb{H}}s(k)=4255σ1​=∑k∈H​s(k)=4255\

5- The Prover sends ComAHPX2=∑i=0degW^(x)w^ick(i)=1058742Com_{AHP_X}^2=\sum_{i=0}^{deg_{\hat{W}(x)}}\hat{w}_i\hspace{1mm}ck(i)=1058742ComAHPX​2​=∑i=0degW^(x)​​w^i​ck(i)=1058742, ComAHPX3=∑i=0degz^A(x)z^Aick(i)=1287898Com_{AHP_X}^{3}=\sum_{i=0}^{deg_{\hat{z}_A(x)}}\hat{z}_{A_i}ck(i)=1287898ComAHPX​3​=∑i=0degz^A​(x)​​z^Ai​​ck(i)=1287898, ComAHPX4=∑i=0degz^B(x)z^Bick(i)=937880Com_{AHP_X}^{4}=\sum_{i=0}^{deg_{\hat{z}_B(x)}}\hat{z}_{B_i}ck(i)= 937880ComAHPX​4​=∑i=0degz^B​(x)​​z^Bi​​ck(i)=937880, ComAHPX5=∑i=0degz^C(x)z^Cick(i)=1199255Com_{AHP_X}^{5}=\sum_{i=0}^{deg_{\hat{z}_C(x)}}\hat{z}_{C_i}ck(i)=1199255ComAHPX​5​=∑i=0degz^C​(x)​​z^Ci​​ck(i)=1199255, ComAHPX6=∑i=0degh0(x)h0ick(i)=255923Com_{AHP_X}^{6}=\sum_{i=0}^{deg_{h_0(x)}}h_{0_i}ck(i)= 255923ComAHPX​6​=∑i=0degh0​(x)​​h0i​​ck(i)=255923 and ComAHPX7=∑i=0degs(x)sick(i)=490704Com_{AHP_X}^{7}=\sum_{i=0}^{deg_{s(x)}}s_i\hspace{1mm}ck(i)=490704ComAHPX​7​=∑i=0degs(x)​​si​ck(i)=490704.

6- The Verifier chooses random numbers α\alphaα, ηA\eta_AηA​, ηB\eta_BηB​, ηC\eta_CηC​ and sends them to the Prover. ( Note that the Prover can choose α=hash(s(0))\alpha=hash(s(0))α=hash(s(0)), ηA=hash(s(1))\eta_A=hash(s(1))ηA​=hash(s(1)), ηB=hash(s(2))\eta_B=hash(s(2))ηB​=hash(s(2)), ηC=hash(s(3))\eta_C=hash(s(3))ηC​=hash(s(3)). Let α=10\alpha=10α=10, ηA=2\eta_A=2ηA​=2, ηB=30\eta_B=30ηB​=30 and ηC=100\eta_C=100ηC​=100.

7- The Prover finds polynomials g1(x)g_1(x)g1​(x) and h1(x)h_1(x)h1​(x) such that

s(x)+r(α,x)∑MηMz^M(x)−(∑MηMrM(α,x))z^(x)=h1(x)vH(x)+xg1(x)+σ1∣H∣s(x)+r(\alpha,x)\sum_{M}\eta_M\hat{z}_M(x)-(\sum_{M}\eta_Mr_M(\alpha,x))\hat{z}(x)=h_1(x)v_{\mathbb{H}}(x)+xg_1(x)+\frac{\sigma_1}{|\mathbb{H}|}s(x)+r(α,x)∑M​ηM​z^M​(x)−(∑M​ηM​rM​(α,x))z^(x)=h1​(x)vH​(x)+xg1​(x)+∣H∣σ1​​ (1)(1)(1)

where r(x,y)=uH(x,y)=vH(x)−vH(y)x−yr(x,y)=u_{\mathbb{H}}(x,y)=\frac{v_{\mathbb{H}}(x)-v_{\mathbb{H}}(y)}{x-y}r(x,y)=uH​(x,y)=x−yvH​(x)−vH​(y)​ , vH(x)=∏h∈H(x−h)=x∣H∣−1v_{\mathbb{H}}(x)=\prod_{h\in \mathbb{H}}(x-h)=x^{|\mathbb{H}|}-1vH​(x)=∏h∈H​(x−h)=x∣H∣−1. Therefore r(x,y)=x37−y37x−yr(x,y)=\frac{x^{37}-y^{37}}{x-y}r(x,y)=x−yx37−y37​ . Also rM(x,y)=∑k∈Hr(x,k)M^(k,y)r_M(x,y)=\sum_{k\in \mathbb{H}}r(x,k)\hat{M}(k,y)rM​(x,y)=∑k∈H​r(x,k)M^(k,y) for M∈{A,B,C}M\in \{A,B,C\}M∈{A,B,C}.

Now, since ∑MηMz^M(x)=ηAz^A(x)+ηBz^B(x)+ηCz^C(x)\sum_M\eta_M\hat{z}_M(x)=\eta_A\hat{z}_A(x)+\eta_B\hat{z}_B(x)+\eta_C\hat{z} _C(x)∑M​ηM​z^M​(x)=ηA​z^A​(x)+ηB​z^B​(x)+ηC​z^C​(x)and r(α,x)=r(10,x)=1037−x3710−xr(\alpha,x)=r(10,x)=\frac{10^{37}-x^{37}}{10-x}r(α,x)=r(10,x)=10−x1037−x37​, so the second term of the left of equation (1)(1)(1) is r(α,x)∑MηMz^M(x)=1254201x74+951966x73+113589x72+498811x71+1098223x70+623670x69+506831x68+1427824x67+170669x66+1564892x65+456048x64+783754x63+911524x62+1557714x61+1027780x60+1574033x59+142618x58+1400297x57+282168x56+1384750x55+197195x54+1663151x53+118626x52+518880x51+143413x50+254527x49+1480415x48+1393054x47+890674x46+1601841x45+234410x44+600518x43+570901x42+601977x41+1491129x40+827957x39+851643x38+345650x37+347482x36+330919x35+857128x34+883439x33+1523863x32+1228455x31+1360072x30+1477512x29+1221548x28+1641696x27+92216x26+1513130x25+606487x24+1664443x23+814464x22+1431125x21+1550828x20+646554x19+1535880x18+1048877x17+1232429x16+1017318x15+1153784x14+1454648x13+885815x12+852481x11+26667x10+127017x9+957446x8+137943x7+729959x6+1418974x5+1383097x4+1529852x3+637155x2+1142934x+830201r(\alpha,x)\sum_M\eta_M\hat{z}_M(x)=1254201x^{74} + 951966x^{73} + 113589x^{72} + 498811x^{71} + 1098223x^{70} + 623670x^{69} + 506831x^{68} + 1427824x^{67 }+ 170669x^{66} + 1564892x^{65} + 456048x^{64} + 783754x^{63} + 911524x^{62} + 1557714x^{61} + 1027780x^{60} + 1574033x^{59} + 142618x^{58} + 1400297x^{57} + 282168x^{56} + 1384750x^{55} + 197195x^{54} + 1663151x^{53 }+ 118626x^{52} + 518880x^{51} + 143413x^{50 }+ 254527x^{49} + 1480415x^{48} + 1393054x^{47} + 890674x^{46} + 1601841x^{45} + 234410x^{44} + 600518x^{43 }+ 570901x^{42} + 601977x^{41} + 1491129x^{40} + 827957x^{39} + 851643x^{38} + 345650x^{37} + 347482x^{36} + 330919x^{35} + 857128x^{34} + 883439x^{33} + 1523863x^{32} + 1228455x^{31} + 1360072x^{30} + 1477512x^{29} + 1221548x^{28} + 1641696x^{27} + 92216x^{26} + 1513130x^{25} + 606487x^{24} + 1664443x^{23} + 814464x^{22} + 1431125x^{21} + 1550828x^{20} + 646554x^{19} + 1535880x^{18} + 1048877x^{17} + 1232429x^{16} + 1017318x^{15} + 1153784x^{14} + 1454648x^{13} + 885815x^{12} + 852481x^{11} + 26667x^{10} + 127017x^9 + 957446x^8 + 137943x^7 + 729959x^6 + 1418974x^5 + 1383097x^4 + 1529852x^3 + 637155x^2 + 1142934x + 830201r(α,x)∑M​ηM​z^M​(x)=1254201x74+951966x73+113589x72+498811x71+1098223x70+623670x69+506831x68+1427824x67+170669x66+1564892x65+456048x64+783754x63+911524x62+1557714x61+1027780x60+1574033x59+142618x58+1400297x57+282168x56+1384750x55+197195x54+1663151x53+118626x52+518880x51+143413x50+254527x49+1480415x48+1393054x47+890674x46+1601841x45+234410x44+600518x43+570901x42+601977x41+1491129x40+827957x39+851643x38+345650x37+347482x36+330919x35+857128x34+883439x33+1523863x32+1228455x31+1360072x30+1477512x29+1221548x28+1641696x27+92216x26+1513130x25+606487x24+1664443x23+814464x22+1431125x21+1550828x20+646554x19+1535880x18+1048877x17+1232429x16+1017318x15+1153784x14+1454648x13+885815x12+852481x11+26667x10+127017x9+957446x8+137943x7+729959x6+1418974x5+1383097x4+1529852x3+637155x2+1142934x+830201

Also, z^(x)=W^(x)vH[≤∣X∣+1](x)+X^(x)=379888x38+554258x37+249703x36+693580x35+237592x34+1271221x33+247551x32+1512810x31+759758x30+1072537x29+253693x28+25719x27+1222503x26+1627866x25+1384100x24+548181x23+649897x22+258321x21+1617844x20+354870x19+637040x18+767176x17+1615730x16+1214248x15+326060x14+1213865x13+1172680x12+65141x11+118953x10+478016x9+1051458x8+1675614x7+949880x6+108738x5+1497503x4+486095x3+958242x2+1278901x+1350868\hat{z}(x)=\hat{W}(x)v_{\mathbb{H}[\leq |X|+1]}(x)+\hat{X}(x)=379888x^{38} + 554258x^{37} + 249703x^{36} + 693580x^{35} + 237592x^{34} + 1271221x^{33} + 247551x^{32} + 1512810x^{31} + 759758x^{30} + 1072537x^{29} + 253693x^{28} + 25719x^{27} + 1222503x^{26} + 1627866x^{25 }+ 1384100x^{24} + 548181x^{23} + 649897x^{22} + 258321x^{21} + 1617844x^{20} + 354870x^{19} + 637040x^{18 }+ 767176x^{17} + 1615730x^{16} + 1214248x^{15} + 326060x^{14} + 1213865x^{13} + 1172680x^{12} + 65141x^{11} + 118953x^{10} + 478016x^9 + 1051458x^8 + 1675614x^7 + 949880x^6 + 108738x^5 + 1497503x^4 + 486095x^3 + 958242x^2 + 1278901x + 1350868z^(x)=W^(x)vH[≤∣X∣+1]​(x)+X^(x)=379888x38+554258x37+249703x36+693580x35+237592x34+1271221x33+247551x32+1512810x31+759758x30+1072537x29+253693x28+25719x27+1222503x26+1627866x25+1384100x24+548181x23+649897x22+258321x21+1617844x20+354870x19+637040x18+767176x17+1615730x16+1214248x15+326060x14+1213865x13+1172680x12+65141x11+118953x10+478016x9+1051458x8+1675614x7+949880x6+108738x5+1497503x4+486095x3+958242x2+1278901x+1350868 that agree with zzz on H\mathbb{H}H. Also, rA(10,x)=∑k∈Hr(10,k)A^(k,x)r_A(10,x)=\sum_{k\in \mathbb{H}}r(10,k)\hat{A}(k,x)rA​(10,x)=∑k∈H​r(10,k)A^(k,x) where A^(x,y)\hat{A}(x,y)A^(x,y) is a polynomial such that A^(ω33,1)=1\hat{A}(\omega^{33},1)=1A^(ω33,1)=1, A^(ω34,ω2)=1\hat{A}(\omega^{34},\omega^2)=1A^(ω34,ω2)=1, A^(ω35,1)=1\hat{A}(\omega^{35},1)=1A^(ω35,1)=1, A^(ω36,ω33)=1\hat{A}(\omega^{36},\omega^{33})=1A^(ω36,ω33)=1, and A^(x,y)=0\hat{A}(x,y)=0A^(x,y)=0 for the rest of points in H×H\mathbb{H}\times\mathbb{H}H×H. So, A^(x,y)\hat{A}(x,y)A^(x,y) is a bivariate polynomial that passes from these 1369 points. This polynomial can obtain as following: A^(x,y)=∑k∈KuH(x,row^AHPA(k))uH(y,col^AHPA(k))valA^(k)=∑k∈Kx37−row^AHPA(k)37x−row^AHPA(k)y37−col^AHPB(k)37y−col^AHPA(k)val^AHPA(k)\hat{A}(x,y)=\sum_{k\in \mathbb{K}}u_{\mathbb{H}}(x,\hat{row}_{AHP_A}(k))u_{\mathbb{H}}(y,\hat{col}_{AHP_A}(k))\hat{val_A}(k)=\sum_{k\in \mathbb{K}}\frac{x^{37}-\hat{row}_{AHP_A}(k)^{37}}{x-\hat{row}_{AHP_A}(k)}\frac{y^{37}-\hat{col}_{AHP_B}(k)^{37}}{y-\hat{col}_{AHP_A}(k)}\hat{val}_{AHP_A}(k)A^(x,y)=∑k∈K​uH​(x,row^AHPA​​(k))uH​(y,col^AHPA​​(k))valA​^​(k)=∑k∈K​x−row^AHPA​​(k)x37−row^AHPA​​(k)37​y−col^AHPA​​(k)y37−col^AHPB​​(k)37​val^AHPA​​(k) So rA(10,x)=∑k∈Hr(10,k)A^(k,x)=535865x36+426856x35+475596x34+458091x33+1506591x32+1335527x31+552969x30+1601654x29+745399x28+1280385x27+671303x26+934855x25+898910x24+1158968x23+641386x22+323675x21+1562721x20+775117x19+327316x18+1420073x17+1643380x16+1205782x15+1516893x14+985877x13+986845x12+1246093x11+815873x10+1148146x9+734510x8+147988x7+284318x6+1525335x5+891280x4+360740x3+448902x2+980633x+1111155r_A(10,x)=\sum_{k\in\mathbb{H}}r(10,k)\hat{A}(k,x)=535865x^{36 }+ 426856x^{35} + 475596x^{34} + 458091x^{33} + 1506591x^{32} + 1335527x^{31} + 552969x^{30} + 1601654x^{29} + 745399x^{28} + 1280385x^{27} + 671303x^{26} + 934855x^{25} + 898910x^{24} + 1158968x^{23} + 641386x^{22} + 323675x^{21} + 1562721x^{20} + 775117x^{19} + 327316x^{18} + 1420073x^{17} + 1643380x^{16} + 1205782x^{15} + 1516893x^{14} + 985877x^{13} + 986845x^{12} + 1246093x^{11} + 815873x^{10} + 1148146x^9 + 734510x^8 + 147988x^7 + 284318x^6 + 1525335x^5 + 891280x^4 + 360740x^3 + 448902x^2 + 980633x + 1111155rA​(10,x)=∑k∈H​r(10,k)A^(k,x)=535865x36+426856x35+475596x34+458091x33+1506591x32+1335527x31+552969x30+1601654x29+745399x28+1280385x27+671303x26+934855x25+898910x24+1158968x23+641386x22+323675x21+1562721x20+775117x19+327316x18+1420073x17+1643380x16+1205782x15+1516893x14+985877x13+986845x12+1246093x11+815873x10+1148146x9+734510x8+147988x7+284318x6+1525335x5+891280x4+360740x3+448902x2+980633x+1111155 where

Now, calculates B^(x,y)\hat{B}(x,y)B^(x,y) similarly as following: B^(x,y)=∑k∈KuH(x,row^AHPB(k))uH(y,col^AHPB(k))val^AHPB(k)=∑k∈Kx37−row^AHPB(k)37x−row^AHPB(k)y37−col^AHPB(k)37y−col^AHPB(k)val^AHPB(k)\hat{B}(x,y)=\sum_{k\in \mathbb{K}}u_{\mathbb{H}}(x,\hat{row}_{AHP_B}(k))u_{\mathbb{H}}(y,\hat{col}_{AHP_B}(k))\hat{val}_{AHP_B}(k)=\sum_{k\in \mathbb{K}}\frac{x^{37}-\hat{row}_{AHP_B}(k)^{37}}{x-\hat{row}_{AHP_B}(k)}\frac{y^{37}-\hat{col}_{AHP_B}(k)^{37}}{y-\hat{col}_{AHP_B}(k)}\hat{val}_{AHP_B}(k)B^(x,y)=∑k∈K​uH​(x,row^AHPB​​(k))uH​(y,col^AHPB​​(k))val^AHPB​​(k)=∑k∈K​x−row^AHPB​​(k)x37−row^AHPB​​(k)37​y−col^AHPB​​(k)y37−col^AHPB​​(k)37​val^AHPB​​(k) So, rB(10,x)=∑k∈Hr(10,k)B^(k,x)=r_B(10,x)=\sum_{k\in\mathbb{H}}r(10,k)\hat{B}(k,x)=rB​(10,x)=∑k∈H​r(10,k)B^(k,x)= 1620326x36+1066668x35+96125x34+603567x33+558242x32+351383x31+1220164x30+1113220x29+511617x28+218379x27+543077x26+178907x25+1329682x24+58568x23+1146533x22+948877x21+45785x20+1231010x19+398692x18+1334094x17+506342x16+28965x15+158706x14+657240x13+506136x12+484833x11+713105x10+498148x9+1237146x8+95520x7+1145960x6+1517154x5+414812x4+1548405x3+614052x2+1634786x+14540021620326x^{36} + 1066668x^{35} + 96125x^{34} + 603567x^{33} + 558242x^{32} + 351383x^{31} + 1220164x^{30} + 1113220x^{29} + 511617x^{28} + 218379x^{27} + 543077x^{26} + 178907x^{25} + 1329682x^{24} + 58568x^{23} + 1146533x^{22} + 948877x^{21} + 45785x^{20} + 1231010x^{19} + 398692x^{18} + 1334094x^{17} + 506342x^{16} + 28965x^{15} + 158706x^{14} + 657240x^{13} + 506136x^{12} + 484833x^{11} + 713105x^{10} + 498148x^9 + 1237146x^8 + 95520x^7 + 1145960x^6 + 1517154x^5 + 414812x^4 + 1548405x^3 + 614052x^2 + 1634786x + 14540021620326x36+1066668x35+96125x34+603567x33+558242x32+351383x31+1220164x30+1113220x29+511617x28+218379x27+543077x26+178907x25+1329682x24+58568x23+1146533x22+948877x21+45785x20+1231010x19+398692x18+1334094x17+506342x16+28965x15+158706x14+657240x13+506136x12+484833x11+713105x10+498148x9+1237146x8+95520x7+1145960x6+1517154x5+414812x4+1548405x3+614052x2+1634786x+1454002

Now, calculates C^(x,y)\hat{C}(x,y)C^(x,y) similarly as following: C^(x,y)=∑k∈KuH(x,row^AHPC(k))uH(y,col^AHPC(k))val^AHPC(k)=∑k∈Kx37−row^AHPC37(k)x−row^AHPC(k)y37−col^AHPC37(k)y−col^AHPC(k)val^AHPC(k)\hat{C}(x,y)=\sum_{k\in \mathbb{K}}u_{\mathbb{H}}(x,\hat{row}_{AHP_C}(k))u_{\mathbb{H}}(y,\hat{col}_{AHP_C}(k))\hat{val}_{AHP_C}(k)=\sum_{k\in \mathbb{K}}\frac{x^{37}-\hat{row}^{37}_{AHP_C}(k)}{x-\hat{row}_{AHP_C}(k)}\frac{y^{37}-\hat{col}^{37}_{AHP_C}(k)}{y-\hat{col}_{AHP_C}(k)}\hat{val}_{AHP_C}(k)C^(x,y)=∑k∈K​uH​(x,row^AHPC​​(k))uH​(y,col^AHPC​​(k))val^AHPC​​(k)=∑k∈K​x−row^AHPC​​(k)x37−row^AHPC​37​(k)​y−col^AHPC​​(k)y37−col^AHPC​37​(k)​val^AHPC​​(k) So, rC(10,x)=∑k∈Hr(10,k)C^(k,x)=r_C(10,x)=\sum_{k\in\mathbb{H}}r(10,k)\hat{C}(k,x)=rC​(10,x)=∑k∈H​r(10,k)C^(k,x)= 564874x36+158712x35+1068273x34+705225x33+585350x32+1605845x31+41353x30+177119x29+934488x28+418387x27+217275x26+277881x25+544871x24+906984x23+1088639x22+730223x21+114465x20+205097x19+1381442x18+366209x17+1014467x16+30473x15+1671297x14+539462x13+45399x12+1575452x11+676582x10+1015618x9+1425352x8+26812x7+661279x6+93349x5+1038786x4+203161x3+277282x2+1676177x+1111155564874x^{36 }+ 158712x^{35} + 1068273x^{34} + 705225x^{33} + 585350x^{32} + 1605845x^{31} + 41353x^{30} + 177119x^{29} + 934488x^{28} + 418387x^{27} + 217275x^{26} + 277881x^{25} + 544871x^{24} + 906984x^{23 }+ 1088639x^{22} + 730223x^{21} + 114465x^{20} + 205097x^{19} + 1381442x^{18} + 366209x^{17} + 1014467x^{16} + 30473x^{15} + 1671297x^{14 }+ 539462x^{13} + 45399x^{12} + 1575452x^{11} + 676582x^{10} + 1015618x^9 + 1425352x^8 + 26812x^7 + 661279x^6 + 93349x^5 + 1038786x^4 + 203161x^3 + 277282x^2 + 1676177x + 1111155564874x36+158712x35+1068273x34+705225x33+585350x32+1605845x31+41353x30+177119x29+934488x28+418387x27+217275x26+277881x25+544871x24+906984x23+1088639x22+730223x21+114465x20+205097x19+1381442x18+366209x17+1014467x16+30473x15+1671297x14+539462x13+45399x12+1575452x11+676582x10+1015618x9+1425352x8+26812x7+661279x6+93349x5+1038786x4+203161x3+277282x2+1676177x+1111155

Therefore, the third term of the left of equation (1)(1)(1) is

(∑MηMrM(α,x))z^(x)=(2rA(10,x)+30rB(10,x)+100rC(10,x))z^(x)(\sum_M \eta_M r_M(\alpha,x))\hat{z}(x)=(2r_A(10,x)+30r_B(10,x)+100r_C(10,x))\hat{z}(x)(∑M​ηM​rM​(α,x))z^(x)=(2rA​(10,x)+30rB​(10,x)+100rC​(10,x))z^(x)

Therefore, the left of equation (1)(1)(1) is s(x)+r(α,x)∑MηMz^M(x)−(∑MηMrM(α,x))z^(x)=s(x)+r(\alpha,x)\sum_M \eta_M \hat{z}M(x)-(\sum_M \eta_M r_M(\alpha,x))\hat{z}(x)=s(x)+r(α,x)∑M​ηM​z^M(x)−(∑M​ηM​rM​(α,x))z^(x)=

Now, the Prover finds polynomials g1(x)g_1(x)g1​(x) and h1(x)h_1(x)h1​(x) such that h1(x)vH(x)+xg1(x)+σ1∣H∣=h_1(x)v_{\mathbb{H}}(x)+xg_1(x)+\frac{\sigma_1}{|\mathbb{H}|}=h1​(x)vH​(x)+xg1​(x)+∣H∣σ1​​=

Therefore, the Prover finds polynomials g1(x)g_1(x)g1​(x) and h1(x)h_1(x)h1​(x)

g1(x)=1399127x35+234054x34+551311x33+1464283x32+1033988x31+1393070x30+1584021x29+262549x28+468851x27+524434x26+730124x25+1548291x24+347787x23+1420568x22+686369x21+1104796x20+1652093x19+186165x18+1119820x17+336318x16+1203175x15+360741x14+187190x13+521109x12+284740x11+1422180x10+475884x9+1047600x8+1225116x7+1150001x6+290466x5+829975x4+1519190x3+1077679x2+852032x+1610672g_1(x)=1399127x^{35} + 234054x^{34} + 551311x^{33} + 1464283x^{32} + 1033988x^{31} + 1393070x^{30} + 1584021x^{29} + 262549x^{28} + 468851x^{27} + 524434x^{26 }+ 730124x^{25} + 1548291x^{24} + 347787x^{23} + 1420568x^{22} + 686369x^{21} + 1104796x^{20 }+ 1652093x^{19} + 186165x^{18} + 1119820x^{17} + 336318x^{16} + 1203175x^{15} + 360741x^{14} + 187190x^{13} + 521109x^{12} + 284740x^{11} + 1422180x^{10} + 475884x^9 + 1047600x^8 + 1225116x^7 + 1150001x^6 + 290466x^5 + 829975x^4 + 1519190x^3 + 1077679x^2 + 852032x + 1610672g1​(x)=1399127x35+234054x34+551311x33+1464283x32+1033988x31+1393070x30+1584021x29+262549x28+468851x27+524434x26+730124x25+1548291x24+347787x23+1420568x22+686369x21+1104796x20+1652093x19+186165x18+1119820x17+336318x16+1203175x15+360741x14+187190x13+521109x12+284740x11+1422180x10+475884x9+1047600x8+1225116x7+1150001x6+290466x5+829975x4+1519190x3+1077679x2+852032x+1610672

h1(x)=560656x37+60831x36+218428x35+666069x34+1029772x33+758630x32+1446724x31+1077267x30+1190239x29+1586425x28+37621x27+1029983x26+1501234x25+721528x24+980207x23+1104424x22+980405x21+722662x20+459859x19+908256x18+1595013x17+1492468x16+546404x15+734174x14+405471x13+1348410x12+339556x11+1274900x10+676949x9+1524717x8+735990x7+1659120x6+1225339x5+236096x4+925377x3+849078x2+589799x+404586h_1(x)=560656x^{37 }+ 60831x^{36} + 218428x^{35} + 666069x^{34} + 1029772x^{33} + 758630x^{32} + 1446724x^{31} + 1077267x^{30} + 1190239x^{29} + 1586425x^{28} + 37621x^{27} + 1029983x^{26} + 1501234x^{25} + 721528x^{24} + 980207x^{23} + 1104424x^{22} + 980405x^{21} + 722662x^{20} + 459859x^{19} + 908256x^{18} + 1595013x^{17} + 1492468x^{16} + 546404x^{15} + 734174x^{14} + 405471x^{13} + 1348410x^{12} + 339556x^{11} + 1274900x^{10} + 676949x^9 + 1524717x^8 + 735990x^7 + 1659120x^6 + 1225339x^5 + 236096x^4 + 925377x^3 + 849078x^2 + 589799x + 404586h1​(x)=560656x37+60831x36+218428x35+666069x34+1029772x33+758630x32+1446724x31+1077267x30+1190239x29+1586425x28+37621x27+1029983x26+1501234x25+721528x24+980207x23+1104424x22+980405x21+722662x20+459859x19+908256x18+1595013x17+1492468x16+546404x15+734174x14+405471x13+1348410x12+339556x11+1274900x10+676949x9+1524717x8+735990x7+1659120x6+1225339x5+236096x4+925377x3+849078x2+589799x+404586

The Prover sends, ComAHPX8=∑i=0degg1(x)g1ick(i)=704382Com_{AHP_X}^{8}=\sum_{i=0}^{deg_{g_1(x)}}g_{1_i}ck(i)=704382ComAHPX​8​=∑i=0degg1​(x)​​g1i​​ck(i)=704382 and ComAHPX9=∑i=0degh1(x)h1ick(i)=1412858Com_{AHP_X}^{9}=\sum_{i=0}^{deg_{h_1(x)}}h_{1_i}ck(i)=1412858ComAHPX​9​=∑i=0degh1​(x)​​h1i​​ck(i)=1412858 to the Verifier where g1ig_{1_i}g1i​​ is coefficient of xix^ixi of polynomial g1(x)g_1(x)g1​(x) and h1ih_{1_i}h1i​​ is coefficient of xix^ixi of polynomial h1(x)h_1(x)h1​(x).

8- The Verifier selects β1∈F−H\beta_1\in \mathbb{F}-\mathbb{H}β1​∈F−H and sends it to the Prover. (The Prover can selects β1=hash(s(8))\beta_1=hash(s(8))β1​=hash(s(8))). Let β1=22\beta_1=22β1​=22.

9- The Prover calculates σ2=∑k∈Hr(α,k)∑MηMM^(k,β1)=378950\sigma_2=\sum_{k\in\mathbb{H}}r(\alpha,k)\sum_{M}\eta_M\hat{M}(k,\beta_1)=378950σ2​=∑k∈H​r(α,k)∑M​ηM​M^(k,β1​)=378950 .

Then, the Prover finds g2(x)g_2(x)g2​(x) and h2(x)h_2(x)h2​(x) such that r(α,x)∑MηMM^(x,β1)=h2(x)vH(x)+xg2(x)+σ2∣H∣r(\alpha,x)\sum_M \eta_M\hat{M}(x,\beta_1)=h_2(x)v_{\mathbb{H}}(x)+xg_2(x)+\frac{\sigma_2}{|\mathbb{H}|}r(α,x)∑M​ηM​M^(x,β1​)=h2​(x)vH​(x)+xg2​(x)+∣H∣σ2​​

where r(α,x)∑MηMM^(x,β1)=r(10,x)(2A^(x,22)+30B^(x,22)+100C^(x,22))r(\alpha,x)\sum_M\eta_M \hat{M}(x,\beta_1)=r(10,x)(2\hat{A}(x,22)+30\hat{B}(x,22)+100\hat{C}(x,22))r(α,x)∑M​ηM​M^(x,β1​)=r(10,x)(2A^(x,22)+30B^(x,22)+100C^(x,22))

=139x72+1209936x71+190587x70+504890x69+1288979x68+1468677x67+1440246x66+522806x65+1359862x64+80868x63+1206390x62+1046755x61+385478x60+565523x59+1148470x58+1201845x57+1116465x56+815461x55+1518339x54+1552482x53+226534x52+1483660x51+1193665x50+861411x49+598582x48+1195837x47+528169x46+785026x45+1054528x44+542637x43+1028077x42+1467957x41+539089x40+1014793x39+1213976x38+1577305x37+1642895x36+90614x35+1441442x34+12666x33+501190x32+200147x31+597144x30+1424505x29+783489x28+1343873x27+202672x26+1040663x25+540033x24+1541994x23+964649x22+1064430x21+1392111x20+366564x19+315215x18+1400207x17+1618951x16+95617x15+1118036x14+1344820x13+526493x12+1160359x11+97560x10+465203x9+865325x8+1087974x7+1483111x6+808894x5+844762x4+1305256x3+751081x2+786432x+292698=139x^{72} + 1209936x^{71} + 190587x^{70} + 504890x^{69} + 1288979x^{68} + 1468677x^{67} + 1440246x^{66} + 522806x^{65} + 1359862x^{64} + 80868x^{63 }+ 1206390x^{62} + 1046755x^{61} + 385478x^{60} + 565523x^{59} + 1148470x^{58} + 1201845x^{57} + 1116465x^{56} + 815461x^{55} + 1518339x^{54} + 1552482x^{53} + 226534x^{52} + 1483660x^{51} + 1193665x^{50} + 861411x^{49} + 598582x^{48} + 1195837x^{47} + 528169x^{46} + 785026x^{45 }+ 1054528x^{44 }+ 542637x^{43} + 1028077x^{42} + 1467957x^{41} + 539089x^{40 }+ 1014793x^{39} + 1213976x^{38} + 1577305x^{37} + 1642895x^{36} + 90614x^{35} + 1441442x^{34 }+ 12666x^{33} + 501190x^{32} + 200147x^{31 }+ 597144x^{30} + 1424505x^{29} + 783489x^{28} + 1343873x^{27} + 202672x^{26} + 1040663x^{25} + 540033x^{24} + 1541994x^{23} + 964649x^{22} + 1064430x^{21} + 1392111x^{20} + 366564x^{19} + 315215x^{18} + 1400207x^{17} + 1618951x^{16} + 95617x^{15} + 1118036x^{14} + 1344820x^{13} + 526493x^{12} + 1160359x^{11} + 97560x^{10} + 465203x^9 + 865325x^8 + 1087974x^7 + 1483111x^6 + 808894x^5 + 844762x^4 + 1305256x^3 + 751081x^2 + 786432x + 292698=139x72+1209936x71+190587x70+504890x69+1288979x68+1468677x67+1440246x66+522806x65+1359862x64+80868x63+1206390x62+1046755x61+385478x60+565523x59+1148470x58+1201845x57+1116465x56+815461x55+1518339x54+1552482x53+226534x52+1483660x51+1193665x50+861411x49+598582x48+1195837x47+528169x46+785026x45+1054528x44+542637x43+1028077x42+1467957x41+539089x40+1014793x39+1213976x38+1577305x37+1642895x36+90614x35+1441442x34+12666x33+501190x32+200147x31+597144x30+1424505x29+783489x28+1343873x27+202672x26+1040663x25+540033x24+1541994x23+964649x22+1064430x21+1392111x20+366564x19+315215x18+1400207x17+1618951x16+95617x15+1118036x14+1344820x13+526493x12+1160359x11+97560x10+465203x9+865325x8+1087974x7+1483111x6+808894x5+844762x4+1305256x3+751081x2+786432x+292698

Hence, the Prover finds g2(x)=1642895x35+90753x34+973057x33+203253x32+1006080x31+1489126x30+387500x29+1186430x28+1306295x27+1025414x26+283540x25+568732x24+1586788x23+249151x22+1530172x21+534579x20+915635x19+1483029x18+1130676x17+1240225x16+1493112x15+322151x14+923375x13+860164x12+1387904x11+80620x10+1293397x9+993372x8+1650351x7+464181x6+347427x5+158650x4+634398x3+166024x2+87553x+322087g_2(x)=1642895x^{35} + 90753x^{34} + 973057x^{33} + 203253x^{32} + 1006080x^{31} + 1489126x^{30} + 387500x^{29} + 1186430x^{28} + 1306295x^{27} + 1025414x^{26} + 283540x^{25} + 568732x^{24} + 1586788x^{23} + 249151x^{22} + 1530172x^{21} + 534579x^{20} + 915635x^{19} + 1483029x^{18} + 1130676x^{17} + 1240225x^{16} + 1493112x^{15} + 322151x^{14} + 923375x^{13} + 860164x^{12} + 1387904x^{11} + 80620x^{10} + 1293397x^9 + 993372x^8 + 1650351x^7 + 464181x^6 + 347427x^5 + 158650x^4 + 634398x^3 + 166024x^2 + 87553x + 322087g2​(x)=1642895x35+90753x34+973057x33+203253x32+1006080x31+1489126x30+387500x29+1186430x28+1306295x27+1025414x26+283540x25+568732x24+1586788x23+249151x22+1530172x21+534579x20+915635x19+1483029x18+1130676x17+1240225x16+1493112x15+322151x14+923375x13+860164x12+1387904x11+80620x10+1293397x9+993372x8+1650351x7+464181x6+347427x5+158650x4+634398x3+166024x2+87553x+322087 and

h2(x)=139x35+1209936x34+190587x33+504890x32+1288979x31+1468677x30+1440246x29+522806x28+1359862x27+80868x26+1206390x25+1046755x24+385478x23+565523x22+1148470x21+1201845x20+1116465x19+815461x18+1518339x17+1552482x16+226534x15+1483660x14+1193665x13+861411x12+598582x11+1195837x10+528169x9+785026x8+1054528x7+542637x6+1028077x5+1467957x4+539089x3+1014793x2+1213976x+1577305h_2(x)=139x^{35} + 1209936x^{34} + 190587x^{33} + 504890x^{32} + 1288979x^{31} + 1468677x^{30} + 1440246x^{29 }+ 522806x^{28} + 1359862x^{27} + 80868x^{26} + 1206390x^{25} + 1046755x^{24} + 385478x^{23} + 565523x^{22} + 1148470x^{21} + 1201845x^{20} + 1116465x^{19} + 815461x^{18} + 1518339x^{17} + 1552482x^{16} + 226534x^{15} + 1483660x^{14} + 1193665x^{13} + 861411x^{12} + 598582x^{11} + 1195837x^{10} + 528169x^9 + 785026x^8 + 1054528x^7 + 542637x^6 + 1028077x^5 + 1467957x^4 + 539089x^3 + 1014793x^2 + 1213976x + 1577305h2​(x)=139x35+1209936x34+190587x33+504890x32+1288979x31+1468677x30+1440246x29+522806x28+1359862x27+80868x26+1206390x25+1046755x24+385478x23+565523x22+1148470x21+1201845x20+1116465x19+815461x18+1518339x17+1552482x16+226534x15+1483660x14+1193665x13+861411x12+598582x11+1195837x10+528169x9+785026x8+1054528x7+542637x6+1028077x5+1467957x4+539089x3+1014793x2+1213976x+1577305

The Prover sends , ComAHPX10=∑i=0degg2(x)g2ick(i)=1380487Com_{AHP_X}^{10}=\sum_{i=0}^{deg_{g_2(x)}}g_{2_i}ck(i)=1380487ComAHPX​10​=∑i=0degg2​(x)​​g2i​​ck(i)=1380487 and ComAHPX11=∑i=0degh2(x)h2ick(i)=259428Com_{AHP_X}^{11}=\sum_{i=0}^{deg_{h_2(x)}}h_{2_i}ck(i)=259428ComAHPX​11​=∑i=0degh2​(x)​​h2i​​ck(i)=259428 where g2ig_{2_i}g2i​​ is coefficient of xix^ixi of polynomial g2(x)g_2(x)g2​(x) and h2ih_{2_i}h2i​​ is coefficient of xix^ixi of polynomial h2(x)h_2(x)h2​(x).

10- The Verifier selects β2∈F−H\beta_2\in \mathbb{F}-\mathbb{H}β2​∈F−H and sends it to the Prover. For example β2=80\beta_2=80β2​=80.

11- The Prover calculates σ3=∑k∈K(∑MηMvH(β2)vH(β1)val^AHPM(k)(β2−row^AHPM(k))(β1−col^AHPM(k)))=1162153\sigma_3=\sum_{k\in\mathbb{K}}(\sum_M \eta_M\frac{v_{\mathbb{H}}(\beta_2)v_{\mathbb{H}}(\beta_1)\hat{val}_{AHP_M}(k)}{(\beta_2-\hat{row}_{AHP_M}(k))(\beta_1-\hat{col}_{AHP_M}(k))})=1162153σ3​=∑k∈K​(∑M​ηM​(β2​−row^AHPM​​(k))(β1​−col^AHPM​​(k))vH​(β2​)vH​(β1​)val^AHPM​​(k)​)=1162153 . Then, the Prover finds polynomials g3(x)g_3(x)g3​(x) and h3(x)h_3(x)h3​(x) such that h3(x)vK(x)=a(x)−b(x)(xg3(x)+σ3∣K∣)h_3(x)v_{\mathbb{K}}(x)=a(x)-b(x)(xg_3(x)+\frac{\sigma_3}{|\mathbb{K}|})h3​(x)vK​(x)=a(x)−b(x)(xg3​(x)+∣K∣σ3​​) where a(x)=∑M∈{A,B,C}ηMvH(β2)vH(β1)val^AHPM(x)∏N∈{A,B,C}−{M}(β2−row^AHPN(x))(β1−col^AHPN(x))a(x)=\sum_{M\in \{A,B,C\}} \eta_M v_{\mathbb{H}}(\beta_2)v_{\mathbb{H}}(\beta_1)\hat{val}_{AHP_M}(x)\prod_{N\in\{A,B,C\}-\{M\}}(\beta_2-\hat{row}_{AHP_N}(x))(\beta_1-\hat{col}_{AHP_N}(x))a(x)=∑M∈{A,B,C}​ηM​vH​(β2​)vH​(β1​)val^AHPM​​(x)∏N∈{A,B,C}−{M}​(β2​−row^AHPN​​(x))(β1​−col^AHPN​​(x)) =1296906x35+1631745x34+612500x33+526824x32+42462x31+818776x30+1402893x29+949566x28+616603x27+986171x26+460008x25+1582261x24+1077886x23+595820x22+1014838x21+1426636x20+118993x19+1092349x18+2468x17+425912x16+662080x15+665736x14+1149617x13+1658716x12+817522x11+616119x10+1252653x9+1566732x8+839662x7+1069376x6+1211198x5+1604604x4+1470873x3+289754x2+317183x+1271979=1296906x^{35} + 1631745x^{34} + 612500x^{33} + 526824x^{32} + 42462x^{31} + 818776x^{30} + 1402893x^{29} + 949566x^{28} + 616603x^{27} + 986171x^{26} + 460008x^{25} + 1582261x^{24} + 1077886x^{23} + 595820x^{22} + 1014838x^{21} + 1426636x^{20} + 118993x^{19} + 1092349x^{18} + 2468x^{17} + 425912x^{16} + 662080x^{15} + 665736x^{14} + 1149617x^{13} + 1658716x^{12} + 817522x^{11} + 616119x^{10} + 1252653x^9 + 1566732x^8 + 839662x^7 + 1069376x^6 + 1211198x^5 + 1604604x^4 + 1470873x^3 + 289754x^2 + 317183x + 1271979=1296906x35+1631745x34+612500x33+526824x32+42462x31+818776x30+1402893x29+949566x28+616603x27+986171x26+460008x25+1582261x24+1077886x23+595820x22+1014838x21+1426636x20+118993x19+1092349x18+2468x17+425912x16+662080x15+665736x14+1149617x13+1658716x12+817522x11+616119x10+1252653x9+1566732x8+839662x7+1069376x6+1211198x5+1604604x4+1470873x3+289754x2+317183x+1271979 and

Therefore

g3(x)=423903x6+1432943x5+936488x4+482019x3+31948x2+604913x+651087g_3(x)=423903x^6 + 1432943x^5 + 936488x^4 + 482019x^3 + 31948x^2 + 604913x + 651087g3​(x)=423903x6+1432943x5+936488x4+482019x3+31948x2+604913x+651087 and

h3(x)=75192x41+1425410x40+366361x39+15942x38+443512x37+1636377x36+1557044x35+746441x34+826820x33+1513071x32+1120754x31+901651x30+374419x29+278754x28+371149x27+659171x26+370586x25+494858x24+79718x23+229682x22+504490x21+1552618x20+1525264x19+146174x18+296224x17+968029x16+291466x15+934467x14+59156x13+1627926x12+1581132x11+243139x10+808890x9+555919x8+1106775x7+417461x6+990811x5+591777x4+284092x3+1261059x2+1522666x+998008h_3(x)=75192x^{41} + 1425410x^{40} + 366361x^{39} + 15942x^{38} + 443512x^{37} + 1636377x^{36} + 1557044x^{35} + 746441x^{34} + 826820x^{33} + 1513071x^{32} + 1120754x^{31} + 901651x^{30} + 374419x^{29} + 278754x^{28} + 371149x^{27} + 659171x^{26} + 370586x^{25} + 494858x^{24} + 79718x^{23} + 229682x^{22} + 504490x^{21} + 1552618x^{20} + 1525264x^{19} + 146174x^{18} + 296224x^{17} + 968029x^{16} + 291466x^{15} + 934467x^{14} + 59156x^{13} + 1627926x^{12} + 1581132x^{11} + 243139x^{10} + 808890x^9 + 555919x^8 + 1106775x^7 + 417461x^6 + 990811x^5 + 591777x^4 + 284092x^3 + 1261059x^2 + 1522666x + 998008h3​(x)=75192x41+1425410x40+366361x39+15942x38+443512x37+1636377x36+1557044x35+746441x34+826820x33+1513071x32+1120754x31+901651x30+374419x29+278754x28+371149x27+659171x26+370586x25+494858x24+79718x23+229682x22+504490x21+1552618x20+1525264x19+146174x18+296224x17+968029x16+291466x15+934467x14+59156x13+1627926x12+1581132x11+243139x10+808890x9+555919x8+1106775x7+417461x6+990811x5+591777x4+284092x3+1261059x2+1522666x+998008

The Prover sends , ComAHPX12=∑i=0degg3(x)g3ick(i)=1418032Com_{AHP_X}^{12}=\sum_{i=0}^{deg_{g_3(x)}}g_{3_i}ck(i)=1418032ComAHPX​12​=∑i=0degg3​(x)​​g3i​​ck(i)=1418032 and ComAHPX13=∑i=0degh3(x)h3ick(i)=1079279Com_{AHP_X}^{13}=\sum_{i=0}^{deg_{h_3(x)}}h_{3_i}ck(i)=1079279ComAHPX​13​=∑i=0degh3​(x)​​h3i​​ck(i)=1079279 where g3ig_{3_i}g3i​​ is coefficient of xix^ixi of polynomial g3(x)g_3(x)g3​(x) and h3ih_{3_i}h3i​​ is coefficient of xix^ixi of polynomial h3(x)h_3(x)h3​(x).

12- The Prover sends πAHP1=4255\pi_{AHP}^1=4255πAHP1​=4255, πAHP2=(1299562,1492556,55492,1130442,1037474,379888)\pi_{AHP}^2=(1299562, 1492556, 55492, 1130442,1037474, 379888)πAHP2​=(1299562,1492556,55492,1130442,1037474,379888), 1501801,379821,1633970,62079,395171,228443,86471,329078,95427,108992,1378515,613699,1501801,379821,1633970,62079,395171,228443,86471,329078,95427, 108992,1378515,613699,1501801,379821,1633970,62079,395171,228443,86471,329078,95427,108992,1378515,613699, 1104416,346226,238219,1433536,161089)1104416,346226,238219,1433536,161089)1104416,346226,238219,1433536,161089)

πAHP5=\pi^5_{AHP}=πAHP5​= (452290,856256,1270694,521470,227473,1478306,1415153,118632,1197528,1666393,27794,(452290,856256,1270694,521470,227473,1478306,1415153,118632,1197528,1666393, 27794,(452290,856256,1270694,521470,227473,1478306,1415153,118632,1197528,1666393,27794, 1484809,287621,475901,1308156,1422362,849425,1248319,406701,418963,1084584,70607,1484809,287621,475901,1308156,1422362,849425,1248319,406701,418963, 1084584,70607,1484809,287621,475901,1308156,1422362,849425,1248319,406701,418963,1084584,70607, ,1289612,1544342,702672,1267429,1041565,1135315,411621),1289612,1544342,702672,1267429,1041565,1135315,411621),1289612,1544342,702672,1267429,1041565,1135315,411621).

πAHP6=\pi_{AHP}^6=πAHP6​= (1228955,598072,871213,716999,913282,1520995,178796,1426141,632720,148723,842325,(1228955,598072,871213,716999,913282,1520995,178796,1426141,632720,148723,842325,(1228955,598072,871213,716999,913282,1520995,178796,1426141,632720,148723,842325, 1393100,1301945,772228,974543,1490686,1461879,1073543,988,1171130,236470,225080,1393100,1301945,772228, 974543,1490686,1461879,1073543,988,1171130,236470, 225080,1393100,1301945,772228,974543,1490686,1461879,1073543,988,1171130,236470,225080, 1269609,1197501,1392158,1572201,35309,270789,926637,1268939,926637,1268939,1269609,1197501,1392158,1572201,35309,270789,926637,1268939,926637,1268939,1269609,1197501,1392158,1572201,35309,270789,926637,1268939,926637,1268939, 1067491,1122641,1248016,198429,340507,247239,1040499,91446,1014490)1067491,1122641,1248016,198429,340507,247239,1040499,91446,1014490)1067491,1122641,1248016,198429,340507,247239,1040499,91446,1014490) and

πAHP7=\pi_{AHP}^7=πAHP7​=

to the Verifier that are value of σ1\sigma_1σ1​, coefficients of polynomials W^(x)\hat{W}(x)W^(x), z^A(x)\hat{z}_A(x)z^A​(x), z^B(x)\hat{z}_B(x)z^B​(x), z^C(x)\hat{z}_C(x)z^C​(x),h0(x)h_0(x)h0​(x) and s(x)s(x)s(x), respectively.

13-The Prover sends πAHP8=\pi_{AHP}^8=πAHP8​=

and πAHP9=\pi_{AHP}^{9}=πAHP9​= to the Verifier that are coefficients of polynomials g1(x)g_1(x)g1​(x) and h1(x)h_1(x)h1​(x), respectively.

14-The Prover sends πAHP10=378950\pi_{AHP}^{10}=378950πAHP10​=378950, πAHP11=()\pi_{AHP}^{11}=()πAHP11​=() and πAHP12=()\pi_{AHP}^{12}=()πAHP12​=() that are value of σ2\sigma_2σ2​ and coefficients of polynomials g2(x)g_2(x)g2​(x) and h2(x)h_2(x)h2​(x), respectively.

15- The Prover sends πAHP13=1162153\pi_{AHP}^{13}=1162153πAHP13​=1162153, πAHP14=()\pi_{AHP}^{14}=()πAHP14​=() and πAHP15=()\pi_{AHP}^{15}=()πAHP15​=() that are value of σ3\sigma_3σ3​ and coefficients of polynomials g3(x)g_3(x)g3​(x) and h3(x)h_3(x)h3​(x), respectively.

16- The Prover chooses random values ηw^\eta_{\hat{w}}ηw^​, ηz^A\eta_{\hat{z}_A}ηz^A​​, ηz^B\eta_{\hat{z}_B}ηz^B​​, ηz^C\eta_{\hat{z}_C}ηz^C​​, ηh0\eta_{h_0}ηh0​​, ηs\eta_sηs​, ηg1\eta_{g_1}ηg1​​, ηh1\eta_{h_1}ηh1​​, ηg2\eta_{g_2}ηg2​​, ηh2\eta_{h_2}ηh2​​, ηg3\eta_{g_3}ηg3​​ and ηh3\eta_{h_3}ηh3​​ of F\mathbb{F}F. For example, ηw^=1\eta_{\hat{w}}=1ηw^​=1, ηz^A=4\eta_{\hat{z}_A}=4ηz^A​​=4, ηz^B=10\eta_{\hat{z}_B}=10ηz^B​​=10, ηz^C=8\eta_{\hat{z}_C}=8ηz^C​​=8, ηh0=32\eta_{h_0}=32ηh0​​=32, ηs=45\eta_s=45ηs​=45, ηg1=92\eta_{g_1}=92ηg1​​=92, ηh1=11\eta_{h_1}=11ηh1​​=11, ηg2=1\eta_{g_2}=1ηg2​​=1, ηh2=5\eta_{h_2}=5ηh2​​=5, ηg3=25\eta_{g_3}=25ηg3​​=25 and ηh3=63\eta_{h_3}=63ηh3​​=63.

17- The Prover calculates the linear combinationp(x)=ηw^w^(x)+ηz^Az^A(x)+ηz^Bz^B(x)+ηz^Cz^C(x)+ηh0h0(x)+ηss(x)+ηg1g1(x)p(x)=\eta_{\hat{w}}\hat{w}(x)+\eta_{\hat{z}_A}\hat{z}_A(x)+\eta_{\hat{z}_B}\hat{z}_B(x)+\eta_{\hat{z}_C}\hat{z}_C(x)+\eta_{h_0}h_0(x)+\eta_ss(x)+\eta_{g_1}g_1(x)p(x)=ηw^​w^(x)+ηz^A​​z^A​(x)+ηz^B​​z^B​(x)+ηz^C​​z^C​(x)+ηh0​​h0​(x)+ηs​s(x)+ηg1​​g1​(x) +ηh1h1(x)+ηg2g2(x)+ηh2h2(x)+ηg3g3(x)+ηh3h3(x)+\eta_{h_1}h_1(x)+\eta_{g_2}g_2(x)+\eta_{h_2}h_2(x)+\eta_{g_3}g_3(x)+\eta_{h_3}h_3(x)+ηh1​​h1​(x)+ηg2​​g2​(x)+ηh2​​h2​(x)+ηg3​​g3​(x)+ηh3​​h3​(x).

The Prover obtains p(x)=1380454x41+849817x40+159830x39+1591067x38+1280259x37+129759x36+1642325x35+1231259x34+1091449x33+1071613x32+608376x31+1671687x30+1634568x29+794532x28+450142x27+1460185x26+849620x25+1337323x24+1094067x23+1046543x22+1173097x21+922535x20+166446x19+1212718x18+116006x17+657804x16+39944x15+289261x14+209333x13+1276111x12+363314x11+103604x10+554869x9+513127x8+586495x7+1263408x6+1598951x5+20405x4+276795x3+1644690x2+238507x+242842p(x)=1380454x^{41} + 849817x^{40} + 159830x^{39} + 1591067x^{38} + 1280259x^{37} + 129759x^{36} + 1642325x^{35 }+ 1231259x^{34} + 1091449x^{33} + 1071613x^{32} + 608376x^{31} + 1671687x^{30} + 1634568x^{29} + 794532x^{28} + 450142x^{27} + 1460185x^{26} + 849620x^{25} + 1337323x^{24} + 1094067x^{23} + 1046543x^{22} + 1173097x^{21} + 922535x^{20} + 166446x^{19} + 1212718x^{18} + 116006x^{17} + 657804x^{16} + 39944x^{15} + 289261x^{14} + 209333x^{13} + 1276111x^{12} + 363314x^{11} + 103604x^{10} + 554869x^9 + 513127x^8 + 586495x^7 + 1263408x^6 + 1598951x^5 + 20405x^4 + 276795x^3 + 1644690x^2 + 238507x + 242842p(x)=1380454x41+849817x40+159830x39+1591067x38+1280259x37+129759x36+1642325x35+1231259x34+1091449x33+1071613x32+608376x31+1671687x30+1634568x29+794532x28+450142x27+1460185x26+849620x25+1337323x24+1094067x23+1046543x22+1173097x21+922535x20+166446x19+1212718x18+116006x17+657804x16+39944x15+289261x14+209333x13+1276111x12+363314x11+103604x10+554869x9+513127x8+586495x7+1263408x6+1598951x5+20405x4+276795x3+1644690x2+238507x+242842

18- The Prover calculates p(x)p(x)p(x) in x=x′x=x'x=x′ (value of x′x'x′ is received from the Verifier), then puts it in πAHP16\pi_{AHP}^{16}πAHP16​ . Therefore πAHP16=p(x′)=y′\pi_{AHP}^{16}=p(x')=y'πAHP16​=p(x′)=y′. For example, if x′=2x'=2x′=2, then πAHP16=p(2)=627433\pi_{AHP}^{16}=p(2)=627433πAHP16​=p(2)=627433.

19- The Prover computes πAHP17=PC.Eval(ck,p(x),dp,rp,x′)\pi_{AHP}^{17}=PC.Eval(ck,p(x),d_p,r_p,x')πAHP17​=PC.Eval(ck,p(x),dp​,rp​,x′) where dpd_pdp​ is degree bound of p(x)p(x)p(x) and rpr_prp​ is a random value. For example, if the polynomial commitment scheme KZGKZGKZG is used, then the Prover builds polynomial q(x)=p(x)−y′x−x′=q(x)=\frac{p(x)-y'}{x-x'}=q(x)=x−x′p(x)−y′​= 1380454x40+254083x39+667996x38+1248738x37+421093x36+971945x35+229573x34+12084x33+1115617x32+1624526x31+500786x30+994938x29+267802x28+1330136x27+1432093x26+967729x25+1106757x24+194195x23+1482457x22+654815x21+804406x20+853026x19+194177x18+1601072x17+1639829x16+580820x15+1201584x14+1014108x13+559228x12+716246x11+117485x10+338574x9+1232017x8+1298840x7+1505854x6+918474x5+79257x4+178919x3+634633x2+1235635x+10314561380454x^{40} + 254083x^{39} + 667996x^{38} + 1248738x^{37} + 421093x^{36} + 971945x^{35} + 229573x^{34} + 12084x^{33} + 1115617x^{32} + 1624526x^{31} + 500786x^{30} + 994938x^{29} + 267802x^{28 }+ 1330136x^{27} + 1432093x^{26} + 967729x^{25} + 1106757x^{24} + 194195x^{23} + 1482457x^{22} + 654815x^{21} + 804406x^{20} + 853026x^{19} + 194177x^{18} + 1601072x^{17} + 1639829x^{16} + 580820x^{15} + 1201584x^{14} + 1014108x^{13} + 559228x^{12 }+ 716246x^{11} + 117485x^{10} + 338574x^9 + 1232017x^8 + 1298840x^7 + 1505854x^6 + 918474x^5 + 79257x^4 + 178919x^3 + 634633x^2 + 1235635x + 10314561380454x40+254083x39+667996x38+1248738x37+421093x36+971945x35+229573x34+12084x33+1115617x32+1624526x31+500786x30+994938x29+267802x28+1330136x27+1432093x26+967729x25+1106757x24+194195x23+1482457x22+654815x21+804406x20+853026x19+194177x18+1601072x17+1639829x16+580820x15+1201584x14+1014108x13+559228x12+716246x11+117485x10+338574x9+1232017x8+1298840x7+1505854x6+918474x5+79257x4+178919x3+634633x2+1235635x+1031456 and calculates πAHP17=gq(τ)\pi_{AHP}^{17}=gq(\tau)πAHP17​=gq(τ) by using ckckck as following: πAHP17=∑i=0degq(x)qick(i)=588602\pi_{AHP}^{17}=\sum_{i=0}^{deg_{q(x)}}q_i\hspace{1mm}ck(i)=588602πAHP17​=∑i=0degq(x)​​qi​ck(i)=588602 where qiq_iqi​ is the coefficient of xix^ixi of q(x)q(x)q(x).

{
    "commitmentId": 64-bit,
    "class": 32-bit Integer,
    "input": 4
    "output": 82    
       
    "P_AHP1": 4255
    "P_AHP2": [1299562,1492556,55492,1130442,1037474,379888],
    "P_AHP3": [692083,703489,1216744,1167473,321181,1322746,1506753,1498609,1459683,604857,
            482390,1448628,44719,1319736,654101,216721,446434,933185,1070791,1124687,
            876189,144534,607746,561332,150588,1374718,166128,1080203,981227,897917,
            222647,1406132,88593,705790,900649,766942,904146,1530559,287049],
    "P_AHP4": [1197347,450382,1309763,1574629,915543,128579,875354,565414,1314862,483212,
               1454517,1109343,1160416,969902,1046489,1538605,807358,883357,1001808,1137937,
               616403,1249926,1501801,379821,1633970,62079,395171,228443,86471,329078,95427,
               108992,1378515,613699,1104416,346226,238219,1433536,161089],  
    "P_AHP5": [452290,856256,1270694,521470,227473,1478306,1415153,118632,1197528,1666393,
               27794,1216001,1536835,258251,948391,64473,456462,1374779,1001678,192385,
               835172,1484809,287621,475901,1308156,1422362,849425,1248319,406701,418963,
               1084584,70607,1289612,1544342,702672,1267429,1041565,1135315,411621],

    "P_AHP6": [1228955,598072,871213,716999,913282,
               1520995,178796,1426141,632720,148723,842325,1393100,1301945,772228,
               974543,1490686,1461879,1073543,988,1171130,236470,225080,1269609,
               1197501,1392158,1572201,35309,270789,926637,1268939,926637,1268939
               1067491,1122641,1248016,198429,340507,247239,1040499,91446,1014490],
    "P_AHP7": [],
    "P_AHP8": [],
    "P_AHP9": [],
    "P_AHP10": 
    "P_AHP11": [],
    "P_AHP12": [],
    "P_AHP13": 
    "P_AHP14": [],
    "P_AHP15": [],
    "P_AHP16": 
    "P_AHP17": 
    
    "Com_AHP1_x": [7,11,0,1,0,1,0,0,0,2,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0]
    "Com_AHP2_x": 1058742,
    "Com_AHP3_x": 1287898,
    "Com_AHP4_x": 937880,
    "Com_AHP5_x": 1199255,
    "Com_AHP6_x": 255923,  
    "Com_AHP7_x": 490704,
    "Com_AHP8_x": 704382,
    "Com_AHP9_x": 1412858,
    "Com_AHP10_x": 1380487,
    "Com_AHP11_x": 259428,
    "Com_AHP12_x": 1418032,
    "Com_AHP13_x": 1079279
}

PreviousExample 1Next4- Proof Verification Phase

Last updated 2 months ago